3x^2=(x+10)(x+12)

Simple and best practice solution for 3x^2=(x+10)(x+12) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x^2=(x+10)(x+12) equation:



3x^2=(x+10)(x+12)
We move all terms to the left:
3x^2-((x+10)(x+12))=0
We multiply parentheses ..
3x^2-((+x^2+12x+10x+120))=0
We calculate terms in parentheses: -((+x^2+12x+10x+120)), so:
(+x^2+12x+10x+120)
We get rid of parentheses
x^2+12x+10x+120
We add all the numbers together, and all the variables
x^2+22x+120
Back to the equation:
-(x^2+22x+120)
We get rid of parentheses
3x^2-x^2-22x-120=0
We add all the numbers together, and all the variables
2x^2-22x-120=0
a = 2; b = -22; c = -120;
Δ = b2-4ac
Δ = -222-4·2·(-120)
Δ = 1444
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1444}=38$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-22)-38}{2*2}=\frac{-16}{4} =-4 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-22)+38}{2*2}=\frac{60}{4} =15 $

See similar equations:

| 18-7x=-4x | | 4a2−3a=0 | | 11/12x=1/6 | | 4a^2−3a=0 | | 3z=1/7 | | k-7k=3(-6-8)+5(-3k-6) | | 24+6x=9 | | 7x+4=(3)(2x-1) | | t÷5-6=14 | | 3(x+2)=-5-(2x-6) | | a÷3+3=10 | | 45/240=3/h | | 8m=1000 | | -3/2y=-18 | | -302=-7x-8(1-7x) | | 3^(2x-1)=112 | | 3x^2-7=2x+1 | | 4s+17=77 | | x/2+-2=12 | | -10/x=-2/15 | | 4s+17=17 | | -(1-8x)-5x=-10-6x | | x-5/6=x+3/3 | | -(1+8v)-4v=-25-4v | | -2=d7/7 | | 3b/5=-1 | | (4a+8)(3a-2)=0 | | 10z/9=2 | | 4y/2=10 | | (5v-2)(v+4)=0 | | 5y/0.75=y-0.9/0.2 | | -4(2n+1)=-22+n |

Equations solver categories